索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 专 刊| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

EEPW首页 > 百科 > 机械波

机械波


贡献者:不爱吃窝瓜    浏览:1010次    创建时间:2015-11-17

  目录
  1 形成传播
  2 分类
  ? 概述
  ? 横波
  ? 纵波
  3 描述
  4 物理性质
  ? 波的折射
  ? 波的反射
  ? 波的干涉
  ? 波的衍射
  ? 多普勒
  ? 驻波
  形成传播
  简介
  机械波与机械振动的关系
  机械振动产生机械波,机械波的传递一定要有介质,有机械振动但不一定有机械波产生。
  形成条件
  波源
  波源也称振源,指能够维持振动的传播,不间断的输入能量,并能发出波的物体或物体所在的初始位置。波源即是机械波形成的必要条件,也是电磁波形成的必要条件。
  波源可以认为是第一个开始振动的质点,波源开始振动后,介质中的其他质点就以波源的频率做受迫振动,波源的频率等于波的频率。
  介质
  广义的介质可以是包含一种物质的另一种物质。在机械波中,介质特指机械波借以传播的物质。仅有波源而没有介质时,机械波不会产生,例如,真空中的闹钟无法发出声音。机械波在介质中的传播速率是由介质本身的固有性质决定的。在不同介质中,波速是不同的。
  下表给出了0℃时,声波在不同介质的传播速度,数据取自《普通高中课程标准实验教科书-物理(选修3-4)》(2005年)[2] 。单位v/m·s^-1
  介质
  空气
  纯水
  盐水
  橡胶
  软木
  铜
  铁
  波速
  332
  1490
  1531
  30~50
  480
  3800
  4900
  传播方式
  质点运动
  机械波在传播过程中,每一个质点都只做上下(左右)的简谐振动,即,质点本身并不随着机械波的传播而前进,也就是说,机械波的一质点运动是沿一水平直线进行的。例如:人的声带不会随着声波的传播而离开口腔。简谐振动做等幅震动,理想状态下可看作做能量守恒的运动.阻尼振动为能量逐渐损失的运动.
  为了说明机械波在传播时质点运动的特点,现已绳波(右下图)为例进行介绍,其他形式的机械波同理。
  绳波是一种简单的横波,在日常生活中,我们拿起一根绳子的一端进行一次抖动,就可以看见一个波形在绳子上传播,如果连续不断地进行周期性上下抖动,就形成了绳波。
  把绳分成许多小部分,每一小部分都看成一个质点,相邻两个质点间,有弹力的相互作用。第一个质点在外力作用下振动后,就会带动第二个质点振动,只是质点二的振动比前者落后。这样,前一个质点的振动带动后一个质点的振动,依次带动下去,振动也就发生区域向远处的传播,从而形成了绳波。如果在绳子上任取一点系上红布条,我们还可以发现,红布条只是在上下振动,并没有随波前进。
  由此,我们可以发现,介质中的每个质点,在波传播时,都只做简谐振动(可以是上下,也可以是左右),机械波可以看成是一种运动形式的传播,质点本身不会沿着波的传播方向移动。
  对质点运动方向的判定有很多方法,比如对比前一个质点的运动;还可以用“上坡下,下坡上”进行判定,即沿着波的传播方向,向上远离平衡位置的质点向下运动,向下远离平衡位置的质点向上运动。
  传播本质
  在机械波传播的过程中,介质里本来相对静止的质点,随着机械波的传播而发生振动,这表明这些质点获得了能量,这个能量是从波源通过前面的质点依次传来的。所以,机械波传播的实质是能量的传播,这种能量可以很小,也可以很大,海洋的潮汐能甚至可以用来发电,这是维持机械波(水波)传播的能量转化成了电能。
  惠更斯原理(Huygens principle)
  惠更斯原理用于解释球面波和平面波的传播,此外还可以解释波的反射、衍射的现象
  在总结许多实验的基础上,荷兰科学家惠更斯提出:介质中波阵面上每一个点(有无数个)都可以看成一个新的波源,这些新的波源发出的子波。经过一定时间后,这些子波的包络面就构成下一时刻的波面。
  根据惠更斯原理,我们可以解释球面波的波面是怎样形成的,右图中,点波源O发出的波在t时刻的波面是一个球面S1,该球面上每一个点都可以看成一个新的点波源,它们各自向前发出球面子波,下一时刻(t+△t)新的波面S2,就是这些子波波面相切的包络面;平面波同理。
  惠更斯原理的局限
  ①没有说明子波的强度分布问题;
  ②没有说明波为什么只能向前传播,而不向后传播的问题。
  后来,菲涅耳对惠更斯原理作了重要的补充,形成惠更斯-菲涅耳原理,这些缺陷才被克服。
  分类
  概述
  随着机械波的传播,介质中的质点振动起来。根据质点的振动方向和波传播的传播方向之间的关系,可以把机械波分为横波和纵波两类。
  横波
  物理学中把质点的振动方向与波的传播方向垂直的波,称作横波。在横波中,凸起的最高处称为波峰,凹下的最低处称为波谷。
  绳波是常见的横波。
  纵波
  物理学中把质点的振动方向与波的传播方向在同一直线的波,称作纵波。质点在纵波传播时来回振动,其中质点分布最密集的地方称为密部,质点分布最稀疏的地方称为疏部。
  声波是常见的纵波。
  描述
  波形曲线
  如果在绳子波动的某个时刻拍下照片,就能得到该时刻的波形。这个波形是由同一时刻具有不同位移的绳上各质点组成的。如果在波形上添加一个坐标系,就可以得到该时刻这个波的图像。用横坐标x表示沿波传播方向上各个质点的平衡位置,用纵坐标y表示各个质点离开平衡位置的大小,规定位移方向向上为正值。在坐标平面上,以某一时刻各个质点的x、y值描出各对应点,在用光滑的曲线连接起来,就得到该时刻波的图像,也称波形曲线或波形。在波的图像上,通常用箭头表示出波的传播方向。
  波形曲线与振动图像有差别,振动图像是振动物体在不同时刻的位移,而波形曲线则是一个特定时刻所有质点的位移。
  波形曲线上,我们可以读出同一时刻所有质点的位移、方向,以及波长、周期等物理量。
  简谐波(simple harmonic wave)
  如果介质中各个质点做简谐运动,它所形成的波就是一种最基本、最简单的波,称为简谐波,它的波形是正弦(或余弦)曲线。其他波可以看成是若干个简谐波合成的 。
  物理描述
  描述机械波的物理量同样适用于电磁波,因此,这里“机械波”简称“波”
  波长(wave length)
  沿着波的传播方向,两个相邻的、相对平衡位置的位移和振动方向总是相同的质点间的距离称作波长,常用λ表示。在横波中,波长等于“波峰-波峰”的长度或“波谷-波谷”的长度;在纵波中,波长等于“密部-密部”或“疏部-疏部”的长度。
  频率与周期
  波上任意一个质点完成一次全振动所需时间称为周期,常用T表示,单位是s;介质中的质点单位时间内完成全振动的次数叫做波的频率,常用f表示,单位是Hz。频率是周期的倒数。
  波速(wave speed)
  波速是单位时间内波在介质中传播的距离,为波长和频率的乘积(v=λf),表示波在的传播速度。机械波在特定介质中的传播速度是固定的。
  物理性质
  机械波的物理性质同样适用于电磁波,因此,这里“机械波”简称“波”
  波的折射
  在物理学中,我们把波在传播过程中,由一种介质进入另一种介质时,传播方向发生改变的现象称为折射。
  在波的折射中入射波的波线与法线的夹角称为入射角,用i表示;折射波的波线与法线的夹角叫做折射角,用r表示。
  折射定律
  进一步研究表明,波在发生折射时,入射角与折射角存在如下关系
  (sini)/(sinr)=v1/v2=λ1/λ2
  v为波速;λ为波长
  这一定律在光学中被称作斯涅耳定律。
  波的反射
  在物理学中,把波遇到障碍时反射回来继续传播的现象称为波的反射
  反射定律
  反射波线、入射波线和法线在同一平面内,反射波线与入射波线分别位于法线两侧,入射角等于反射角。
  波的干涉
  频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。这种现象叫做波的干涉。
  产生干涉的一个必要条件是,两列波的频率必须相同或者有固定的相位差。如果两列波的频率不同或者两个波源没有固定的相位差(相差),相互叠加时波上各个质点的振幅是随时间而变化的,没有振动总是加强或减弱的区域,因而不能产生稳定的干涉现象,不能形成干涉图样。
  两列波的相干条件是:
  ①频率相同
  ②振动方向相同
  ③相位相同或相位差恒定
  波的叠加原理
  波的叠加原理包含了两点:
  ①各波源所激发的波可以在同一介质中独立地传播,它们相遇后再分开,其传播情况(频率、波长、传播方向、周相等)与未遇时相同,互不干扰,就好像其他波不存在一样;
  ②在相遇区域里各点的振动是各个波在该点所引起的振动的矢量和。
  波的衍射
  衍射是波的特有现象,一切波都能发生衍射.
  ①波可以绕过障碍物继续传播,这种现象叫做波的衍射.
  ②观察到明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多或者比波长更小时,才能观察到明显的衍射现象.
  ③相对于波长而言,障碍物的线度越大衍射现象越不明显,障碍物的线度越小衍射现象越明显。
  多普勒
  多普勒效应是为纪念奥地利物理学家及数学家,克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。多普勒认为,物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高 (蓝移(blue shift))。在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低 (红移(red shift))。波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。恒星光谱线的位移显示恒星循着观测方向运动的速度。除非波源的速度非常接近光速,否则多普勒位移的程度一般都很小。所有波动现象 (包括光波) 都存在多普勒效应。
  驻波
  频率和振幅均相同、振动方向一致、传播方向相反的两列波叠加后形成的波。波在介质中传播时其波形不断向前推进,故称行波;上述两列波叠加后波形并不向前推进,故称驻波。
  测量两相邻波节间的距离就可测定波长。各种乐器,包括弦乐器、管乐器和打击乐器,都是由于产生驻波而发声。为得到最强的驻波, 弦或管内空气柱的长度L必须等于半波长的整数倍,即,k为整数,λ为波长 。因而弦或管中能存在的驻波波长为,相应的振动频率为,υ为波速。k=1时,,称为基频,除基频外,还可存在频率为kn1的倍频。
  入射波(推进波)与反射波相互干扰而形成的波形不再推进(仅波腹上、下振动,波节不移动)的波浪,称驻波。驻波多发生在海岸陡壁或直立式水工建筑物前面。紧靠陡壁附近的海水面随时间虽作周期性升降,海水呈往复流动,但并不向前传播,水面基本上是水平的,这就是由于受岸壁的限制使入射波与反射波相互干扰而形成的。波面随时间作周期性的升降,每隔半个波长就有一个波面升降幅度为最大的断面,称为波腹;当波面升降的幅度为0时的断面,称为波节。相邻两波节间的水平距离仍为半个波长,因此驻波的波面包含一系列的波腹和波节,腹节相间,波腹处的波面的高低虽有周期性变化,但此断面的水平位置是固定的,波节的位置也是固定的。这与进行波的波峰、波谷沿水平方向移动的现象正好相反,驻波的形状不传播,故名驻波。当波面处于最高和最低位置时,质点的水平速度为零,波面的升降速度也为零;当波面处于水平位置时,流速的绝对值最大,波面的升降也最快,这是驻波运动独有的特性。


如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本

开放分类
机械波    衍射    

参考资料
百度百科

贡献者


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]