索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 杂 志| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

消弧线圈

浏览2617次
消弧线圈顾名思意就是灭弧的 ,早期采用人工调匝式固定补偿的消弧线圈,称为固定补偿系统。消弧线圈属于动芯式结构消弧线圈广泛用于lOkV-6kV级的谐振接地系统。由于变电所的无油化倾向,因此35kV以下的消弧线圈现很多是干式浇注型。
发展过程
早期采用人工调匝式固定补偿的消弧线圈,称为固定补偿系统。固定补偿系统的工作方式是:将消弧线圈整定在过补偿状态,其过补程度的大小取决于电网正常稳态运行时不使中性点位移电压超过相电压的15%,之所以采用过补偿是为了避免电网切除部分线路时发生危险的串联谐振过电压。因为如整定在欠补偿状态,切除线路将造成电容电流减少,可能出现全补偿或接近全补偿的情况。但是这种装置运行在过补偿状态当电网中发生了事故跳闸或重合等参数变化时脱谐度无法控制,以致往往运行在不允许的脱谐度下,造成中性点过电压,三相电压对称遭到破坏。可见固定补偿方式很难适应变动比较频繁的电网,这种系统已逐渐不再使用。取代它的是跟踪电网电容电流自动调谐的装置,这类装置又分为两种,一种称之为随动式补偿系统。随动式补偿系统的工作方式是:自动跟踪电网电容电流的变化,随时调整消弧线圈,使其保持在谐振点上,在消弧线圈中串一电阻,增加电网阻尼率,将谐振过电压限制在允许的范围内。当电网发生单相接地故障后,控制系统将电阻短接掉,达到最佳补偿效果,该系统的消弧线圈不能带高压调整。另一种称之为动态补偿系统。动态补偿系统的工作方式是:在电网正常运行时,调整消弧线圈远离谐振点,彻底避免串联谐振过电压和各种谐振过电压产生的可能性,当电网发生单相接地后,瞬间调整消弧线圈到最佳状态,使接地电弧自动熄灭。这种系统要求消弧线圈能带高电压快速调整,从根本上避免了串联谐振产生的可能性,通过适当的控制,该系统是唯一可能使电网中原有功率方向型单相接地选线装置继续使用的系统。中国主要产品有自动补偿的消弧线圈国内主要有三种产品,分别是调气隙式,调匝式及偏磁式。
作用
消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度V来描述调谐程度。
V=(IC-IL)/IC。当V=0时,称为全补偿,当V>0时为欠补偿,V<0时为过补偿。从发挥消弧线圈的作用上来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。如煤矿6KV电网,当消弧线圈处于全补偿状态时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10~25倍,这就是通常所说的串联谐振过电压。除此之外,电网的各种操作(如大电机的投入,断路器的非同期合闸等)都可能产生危险的过电压,所以电网正常运行时,或发生单相接地故障以外的其它故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。综上所述,当电网未发生单相接地故障时,希望消弧线圈的脱谐度越大越好,最好是退出运行。
特点

消弧线圈
电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。这种线圈的基本工作原理是利用施加直流励磁电流,改变铁芯的磁阻,从而改变消弧线圈电抗值的目的,它可以带高压以毫秒级的速度调节电感值。弧线圈装置运行状态分析的目的是为了及时发现缺陷,及时消除缺陷,确保检修工作做到工效高(检修工期短,耗用工时少)、用料省(器材消耗少,修旧利废好)、安全好(不发生人身、电网、设备事故)。提高消弧线圈装置健康水平,使消弧线圈装置经常处于良好运行状态。
采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿或接近全补偿状态,会出现串联谐振过电压使中性点电压升高,电网中各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。所以电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门规定“固定式消弧线圈不能工作在全补偿或接近全补偿状态”的原因。同类自动补偿装置均是随动系统,都是在电网尚未发生接地故障前即将消弧线圈调节到全补偿状态等待接地故障的发生,这了避免出现过高的串联谐振过电压而在消弧线圈上串联一阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题,另外由于电阻的功率限制,在出现接地故障后必须迅速的切除,这无疑给电网增加了一个不安全因素。偏磁式消弧线圈不是采用限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。
操作规程
(一)消弧线圈装置运行中从一台变压器的中性点切换到另一台时,必须先将消弧线圈断开后再切换。不得将两台变压器的中性点同时接到一台消弧线圈上。
(二)主变压器和消弧线圈装置一起停电时,应先拉开消弧线圈的隔离开关,再停主变,送电时相反。
(三)系统中发生单相接地时,禁止操作或手动调节该段母线上的消弧线圈,有人值守变电站应监视并记录下列数据。
使用范围
纯电缆网络或以电缆为主的配电网宜采用小电阻接地,而对于以架空线为主的配电网宜采用消弧线圈接地。对于前一点,我们有不同的看法。电缆为主的网络,如果采用中性点经小电阻接地的方式,若代之以能快速响应的消弧线圈接地(响应时间应小于10ms ,低于小电阻接地系统中开关等的响应时间),则不管是因电缆本身质量问题还是电缆连接头闪络而导致的单相接地,消弧线圈能快速补偿,就能显著地降低接地点的电流,使瞬时性故障能自行恢复,避免跳闸造成的停电;而对非瞬时性故障也因故障电流大大减少而避免了巨大的短路电流对电缆的冲击,使故障点不易扩大,因而大大提高了供电可靠性。如果消弧线圈系统自带状态识别功能,对于永久性接地故障能在接地发生后快速选线并跳闸,就与小电阻接地方式一样对电缆起到保护作用。可见,性能优良的消弧线圈系统在纯电缆或以电缆为主的配电网中使用更具优越性。而上述接地方式集中了传统消弧线圈接地和经小电阻接地的优点,是一种较为理想的接地方式。



如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本
开放分类
工业控制    

参考资料

贡献者
XXLL    


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]