索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 专 刊| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

EEPW首页 > 百科 > 电动执行器

电动执行器


贡献者:angelazhang    浏览:4761次    创建时间:2014-12-25

  电动执行器
  1 电动执行器
  (又称为电动执行机构)
  英文名称:Electronic Actuator
  应用于各种工业自动化过程控制环节。
  行业标准:JB/T-8219-1999
  2 分类
  按照运动方式分为:角行程和直行程(其中角行程中分为多回转和部分回转,直行程通常为推拉式结构)
  常用于配套各种阀门构成电动阀门或者电动调节阀(例如:球阀、蝶阀、闸阀、调节阀、单座阀等)
  以AC交流电或DC直流电为驱动能源;根据动作方式分为两大类(电动开关型和电动调节型)
  优点是能源取用方便,信号传输速度快,传输距离远,便于集中控制,灵敏度和精度较高,与电动调节仪表配合方便,安装接线简单。
  缺点是结构复杂,推力小,平均故障率高于气动执行机构,适用于防爆要求不高,气源缺乏的场所。
  3 为何选择电动执行器(电动推杆/电缸/)
  相对于液压型和气动型的同功能产品,电动执行器 性价比最高。 电动执行器(电动推杆/电缸) 更为清洁、操作更为简便,电力能效更高,用户可因此获益。 电动执行器 的一体化设计更易于编程控制,维护工作量减至最小,除非在极端条件下,无需更获或润滑部件。
  4 常见品牌
  主要有:ROTORK
  GRAT EA
  FISHER
  KOSO
  SIPOS
  5 性能特点
  1、功能强劲:智能型、比例式、开关式、各类信号输出型应有尽有。   2、体积小巧:体积仅相当于同类产品的35%左右。   3、轻便宜人:重量仅相当于同类产品的30%左右。   4、性能可靠:轴承牙口电器元件等关键零部件采用进口名牌产品。   5、美观大方:铝合金压铸外壳、精细流畅、且可减少电磁干扰。   6、精密耐磨:蜗轮输出轴一体化特殊铝合金锻造、强度高、耐磨性好。   7、回差极小:蜗轮输出轴一体化、避免了键联结的间隙、传动精度高。   8、安全保证:通过1500V耐压检测,F级绝缘电机,安全有保障。   9、配套简单:采用单相电源、外接线路特别简单,也可做380V、直流电源。   10、使用方便:免加油、免点检、防水防锈、任意角度安装。   11、保护装置:双重限位、过热保护、过载保护(选装)。   12、多种速度:全行程时间5秒、10秒、15秒、30秒、60秒、100秒等。   13防腐防锈:支架、联轴器、螺钉均采用不锈钢。   14、智能数控:数字设定、数字整定、高度精确、自诊断、一机多能。   15、集成一体:智能控制模块高度集成于电动装置本体中,无须外接定位器等。
  6 机构类型
  1.电动多回转式执行机构
  电力驱动的多回转式执行机构是最常用、最可靠的执行机构类型之一。使用单相或三相电动机驱动齿轮或蜗轮蜗杆最后驱动阀杆螺母,阀杆螺母使阀杆产生运动使阀门打开或关闭。   多回转式电动执行机构可以快速驱动大尺寸阀门。为了保护阀门不受损坏,安装在在阀门行程的终点的限位开关会切断电机电源,同时当安全力矩被超过时,力矩感应装置也会切断电机电源,位置开关用于指示阀门的开关状态,安装离合器装置的手轮机构可在电源故障时手动操作阀门。   这种类型执行机构的主要优点是所有部件都安装在一个壳体内,在这个防水、防尘、防爆的外壳内集成了所有基本及先进的功能。主要缺点是,当电源故障时,阀门只能保持在原位,只有使用备用电源系统,阀门才能实现故障安全位置(故障开或故障关)
  2.电动单回转式执行机构
  这种执行机构类似于电动多回转执行机构,主要差别是执行机构最终输出的是1/4转记90度的运动。新一代电动单回转式执行机构结合了大部分多回转执行机构的复杂功能,例如:使用非进入式用户友好的操作界面实现参数设定与诊断功能。   单回转执行机构结构紧凑可以安装到小尺寸阀门上,通常输出力矩可达800公斤米,另外应为所需电源较小,它们可以安装电池来实现故障安全操作。
  3.流体驱动多回转式或直线输出执行机构
  这种类型执行机构经常用于操作直通阀(截止阀)和闸阀,它们使用气动或液动操作方式。结构简单,工作可靠,很容易实现故障安全操作模式。   通常情况下人们使用电动多回转执行机构来驱动闸阀和截止阀,只有在无电源时才考虑使用液动或气动执行机构。
  4.流体驱动单回转式执行机构
  气动、液动单回转执行机构非常通用,它们不需要电源并且结构简单,性能可靠。它们应用的领域非常广泛。通常输出从几公斤米到几万公斤米。它们使用气缸及传动装置将直线运动转换为直角输出,传动装置通常有:拨叉、齿轮齿条,杠杆。齿轮齿条在全行程范围内输出相同力矩,它们非常适用于小尺寸阀门,拨叉具有较高效率在行程起点具有高力矩输出非常适合于大口径阀门。气动执行机构一般安装电磁阀、定位器或位置开关等附件来实现对阀门的控制和监测。   这种类型执行机构很容易实现故障安全操作模式。
  7 优点缺点
  优点
  电动执行器的优点是能源取用方便,信号传输速度快,传输距离远,便于集中控制,灵敏度和精度较高,与电动调节仪表配合方便,安装接线简单。缺点是结构复杂,推力小,平均故障率高于气动执行机构,适用于防爆要求不高,气源缺乏的场所。
  缺点
  电动执行机构的缺点主要有:   结构较复杂,更容易发生故障,且由于它的复杂性,对现场维护人员的技术要求就相对要高一些;电机运行要产生热,如果调节太频繁,容易造成电机过热,产生热保护,同时也会加大对减速齿轮的磨损;另外就是运行较慢,从调节器输出一个信号,到调节阀响应而运动到那个相应的位置,需要较长的时间,这是它不如气动、液动执行器的地方。
  8 线路设计
  1.执行器主要是控制驱动阀门的驱动装置,简单的说就是控制法门的正反转,首先应要考虑的是根据阀门的扭矩来选择执行器电机的大小,阀门的扭矩一般在1NM-30000NM之间,电机的选择也是在0.25KW-15KW左右,3KW以下的电机可以用接触器和可控硅来控制,3KW以上的则必须用接触器控制。   2.根据客户现场的工艺要求,看法门是开关型的还是调节型的,如是调节型,而且调节很频繁是则必须用可控硅,因可控硅的暗触点可视为无限次使用,而接触器的使用寿命在10000000次,   3.停机方式,是通过法门执行器的限位停机,或者是力矩停机,每台执行器必须配备的限位开关和力矩开关,如用限位停机,则力矩开关做为保护,如用力矩停机则限位开关做为保护。   4开关型的电气控制方式相对来讲比较简单,可以说是最简单的可以作成正反转控制电路,而调节型的要需要电位计或霍尔元件做反馈,可以结合PLC或单片机来设计,5如果是profibus等总线控制的话,可以说现在国产的执行器还没有这个水平,国外的执行器的技术做的很成熟。6电源供电方式可以根据电源板选择,国内基本上都是用380V,或220V.
  9 故障维修
  一.指示灯故障   1.故障现象:   给电动执行机通电后发现电源指示灯不亮,伺放板无反馈,给信号不动作。   故障判断和检修过程:   因电源指示灯不亮,首先检查保险管是否开路,经检查保险管完好,综合故障现象,可以推断故障有可能发生在伺放板的电源部分,接着检查电源指示灯,用万用表检测发现指示灯开路,更换指示灯故障排除。   结论:电源指示灯开路会造成整个伺放板不工作。   2.故障现象:(调试中发现)   电动执行器的执行机构通电后,给信号开可以,关不动作。   故障判断和检修过程:   先仔细检查反馈线路,确认反馈信号无故障,给开信号时开指示灯亮,说明开正常,给关信号时关指示灯不亮,说明关可控硅部分有问题,首先检查关指示灯,用万用表检测发现关指示灯开路,将其更换后故障排除。   结论:关和开指示灯不亮(开路)时可控硅不动作。   二.电阻电容   1.故障现象:   PSL210执行机构通电后,给定一个信号(例75%),执行机构会全开到底,然后回到指定位置(75%)。   故障判断和检修过程:   根据以上故障现象,首先要判断是伺放板和执行机构那一个有问题。将伺放板从执行机构上拆下,直接将电源线接到X5/1和X5/4端子上,执行机构关方向动作,将电源线接到X5/1和X5/2端子上,执行机构开方向动作,如果执行机构动作不正常,说明故障在执行器上。用万用表测电机绕组正常,再测电容两边的电阻发现有一个开路,将其更换后故障排除。   结论:遇到以上故障现象时,首先要判断故障发生在那一个部分上,最后确定根源。   2.故障现象:   执行机构通电后给关信号(4mA)执行机构先全开后再全关。   故障判断和检修过程:   先拆除伺放板,直接给执行机构通电发现仍然存在原故障,检查电阻,电阻阻值正常,说明电阻没问题,检查电机绕组,发现阻值正常,电机没问题。由此故障推断有可能电容坏,重新更换电容,故障排除。   结论:出现该问题时首先怀疑电阻和电容。   三.其它   1、故障现象:   现场只要送AC220V电源,保护开关立即动作(跳闸)执行机构伺放保险已烧。   故障判断和检修过程:   首先用万用表检测执行机构上的电机绕组,发现电机绕组的电阻趋向于零,说明电机已短路,再检测抱闸两端电阻,电阻趋向于无穷大,说明抱闸已坏,正常应是1.45K左右。最终的处理办法是:更换新的抱闸和电机,把伺放板的保险管装上,重新调试,恢复正常运作。   结论:此情况应是由于抱闸坏了之后把电机抱死而现场没有及时发现,使电机长期处于堵转发热,工作最终使电机相间绝缘破坏所导致的。(PSQ700)   2、故障现象:   执行机构的动作方向不受输入信号的控制。   故障判断和检修过程:   先检查两个限流电阻和移相电容均没有异常,用万用表检查电机的绕组阻值,发现电机的电阻值为1.45MΩ(且不时地发生变化),说明电机绕组不对,最终的办法是更换了这台电机(PSQ200)。   3、故障现象:   执行机构的动作方向不受伺放板的控制。   故障判断和检修过程:   首先让用户用万用表检测两个限流电阻和移相电容及电机的绕组阻值,用户的检查结果和我们提供的最终数据一致。除了这三个因素以外再没有其它的可能性,用户只想我们派人过去现场,田光日正好去了杭州顺便去了现场,发现其中一个限流电阻开路,让公司给寄一限流电阻过去,此案例说明有此用户根本没有配合我们的工作,有些反映的情况与实际有点差别。我认为影响执行机构转向的三个因素就是①电机(PSL208)本身的绕组②限流电阻③移相电容,以后发生这种情况都有要从这三方面考虑。   4故障现象:   无论现场给什么信号电机都不动作,   故障判断和检修过程:   直接在电机绕组间通电,电机也不传,抱闸拆下通电电机还是不转,检测电机绕组阻值均正常,手轮摇执行机构动作正常。检测的结果都正常就是通电时电机不转,此时怀疑电机的转子,把电机拆开,发现转子用手都拧不动,原来转子和电机端盖之间已有一层坚固的灰,把这层灰清除之后,加上一点润滑油,用手就可以拧动了。重新把电机装好并与执行机构配合装上,通电正常,重新调试。
  10 选用须知
  一、根据阀门所需的扭力确定电动执行器的输出扭力   阀门启闭所需的扭力决定着电动执行器选择多大的输出扭力,一般由使用者提出或阀门厂家自行选配,做为执行器厂家只对执行器的输出扭力负责,阀门正常启闭所需的扭力由阀门口径大小、工作压力等因素决定,但因阀门厂家加工精度、装配工艺有所区别,所以不同厂家生产的同规格阀门所需扭力也有所区别,即使是同个阀门厂家生产的同规格阀门扭力也有所差别,当选型时执行器的扭力选择太小就会造成无法正常启闭阀门,因此电动执行器必需选择一个合理的扭力范围。   二、根据所选电动执行器确定电气参数   因不同执行器厂家的电气参数有所差别,所以设计选型时一般都需确定其电气参数,主要有电机功率、额定电流、二次控制回路电压等,往往在这方面的疏忽,结果控制系统与电动执行器参数不匹配造成工作时空开跳闸、保险丝熔断、热过载继电器保护起跳等故障现像。
  11 区别
  从传统观念来看,气缸与电动执行器一直被认为是属于两个完全不同领域的自动化产品,随着电气化程度的不断提高,电动执行器却慢慢浸入气动领域,二者在应用中既有竞争又相互补充。在本期栏目中,我们将从技术性能、购买和应用成本、能源效率、应用场合及市场形势等几个方面来对比气缸与电动执行器各自的优势
  技术性能的比较
  众所周知,相比电动执行器,气缸可在恶劣条件下可靠地工作,且操作简单,基本可实现免维护。气缸擅长作往复直线运动,尤其适于工业自动化中最多的传送要求——工件的直线搬运。而且,仅仅调节安装在气缸两侧的单向节流阀就可简单地实现稳定的速度控制,也成为气缸驱动系统最大的特征和优势。所以对于没有多点定位要求的用户,绝大多数从使用便利性角度更倾向于使用气缸工业现场使用电动执行器的应用大部分都是要求高精度多点定位,这是由于用气缸难以实现,退而求其次的结果。
  而电动执行器主要用于旋转与摆动工况。其优势在于响应时间快,通过反馈系统对速度、位置及力矩进行精确控制。但当需要完成直线运动时,需要通过齿形带或丝杆等机械装置进行传动转化,因此结构相对较为复杂,而且对工作环境及操作维护人员的专业知识都有较高要求。
  气缸的优势在于
  (1)对使用者的要求较低。气缸的原理及结构简单,易于安装维护,对于使用者的要求不高。电缸则不同,工程人员必需具备一定的电气知识,否则极有可能因为误操作而使之损坏。
  (2)输出力大。气缸的输出力与缸径的平方成正比;而电缸的输出力与三个因素有关,缸径、电机的功率和丝杆的螺距,缸径及功率越大、螺距越小则输出力越大。一个缸径为50mm的气缸,理论上的输出力可达2000N,对于同样缸径的电缸,虽然不同公司的产品各有差异,但是基本上都不超过1000N。显而易见,在输出力方面气缸更具优势。
  (3)适应性强。气缸能够在高温和低温环境中正常工作且具有防尘、防水能力,可适应各种恶劣的环境。而电缸由于具有大量电气部件的缘故,对环境的要求较高,适应性较差。
  电缸的优势主要体现在以下3个方面:
  (1)系统构成非常简单。由于电机通常与缸体集成在一起,再加上控制器与电缆,电缸的整个系统就是由这三部分组成的,简单而紧凑。
  (2)停止的位置数多且控制精度高。一般电缸有低端与高端之分,低端产品的停止位置有3、5、16、64个等,根据公司不同而有所变化;高端产品则更是可以达到几百甚至上千个位置。在精度方面,电缸也具有绝对的优势,定位精度可达?0.05mm,所以常常应用于电子、半导体等精密的行业。
  (3)柔韧性强。毫无疑问,电缸的柔韧性远远强于气缸。由于控制器可以与PLC直接进行连接,对电机的转速、定位和正反转都能够实现精确控制,在一定程度上,电缸可以根据需要随意进行运动;由于气体的可压缩性和运动时产生的惯性,即使换向阀与磁性开关之间配合地再好也不能做到气缸的准确定位,柔韧性也就无从谈起了。
  在技术性能方面,本人认为电动和气动各有所长,首先电动执行器的优势主要包括:
  (1)结构紧凑,体积小巧。比起气动执行器,电动执行器结构相对简单,一个基本的电子系统包括执行器,三位置DPDT开关、熔断器和一些电线,易于装配。
  (2)电动执行器的驱动源很灵活,一般车载电源即可满足需要,而气动执行器需要气源和压缩驱动装置。
  (3)电动执行器没有“漏气”的危险,可靠性高,而空气的可压缩性使得气动执行器的稳定性稍差。
  (4)不需要对各种气动管线进行安装和维护。
  (5)可以无需动力即保持负载,而气动执行器需要持续不断的压力供给。
  (6)由于不需要额外的压力装置,电动执行器更加安静。通常,如果气动执行器在大负载的情况下,要加装消音器。
  (7)电动执行器在控制的精度方面更胜一筹。
  (8)气动装置中的通常需要把电信号转化为气信号,然后再转化为电信号,传递速度较慢,不宜用于元件级数过多的复杂回路。
  而气缸的优势则在于以下4个方面:
  (1)负载大,可以适应高力矩输出的应用(不过,现在的电动执行器已经逐渐达到目前的气动负载水平了)。
  (2)动作迅速、反应快。
  (3)工作环境适应性好,特别在易燃、易爆、多尘埃、强磁、辐射和振动等恶劣工作环境中,比液压、电子、电气控制更优越。
  (4)行程受阻或阀杆被扎住时电机容易受损。
  购买和应用成本比较
  从总体上来讲,电伺服驱动比气动伺服驱动要贵,但也要因具体要求及场合而定。有些小功率的直流电机构成电动滑台(电伺服系统)实际上比气动伺服系统要便宜。
  如:当负载为1.5kg、工作行程为80mm、速度在2~170mm/s之间、精度为?0.1mm、加速度2.5m/s2等工况条件时,FESTO公司采用小型电动滑台、控制器、马达电缆、控制电缆、编程电缆以及电源电缆等组成的电伺服系统,其价格就比气动伺服系统便宜25%。同样,对于带活塞杆电缸也是如此。需要说明的是如果采用交流电机的话,所组成的电伺服系统的价格要比气动伺服系统高出40%左右。
  从购买和应用成本来看,气缸还是具有比较明显的优势的。对于气动系统来说,控制系统及执行机构都非常简单,每个气缸只需配置一个电磁阀就可完成气路的切换,进行运动控制,气缸发生故障的概率也比较小,维护简单方便,成本也低。
  而对于电动执行器来说,虽然电能的获得比较简单,能量成本较低,但购买及应用成本较高,不仅需要配置电机,还需要一套机械传动机构以及相应的驱动元件。同时使用电动执行器需要很多保护措施,错误的电路连接、电压的波动及负载的超载都会对电驱动器造成损坏,因此需要在电路及机械上加装保护系统,增加了很多额外的费用支出。另外,由于电动执行器驱动单元的参数化设置较多,且集成度高,所以其一旦发生故障,就要更换整个元件。而且当系统需要的驱动力增加时,也要成套更换元件才能实现。因此综合比较可以看出气缸在购买及维护成本上有较大优势。
  能源效率比较
  我们研究的结果表明,在往复运动周期较短(小于1min)的水平往复运动中,电动执行器的运行能耗通常低于气缸的运行能耗,即更节能。而在往复运动周期较长(大于1min)时,气缸竟然变得更节能。这首先是由于终端停止时电动执行器的控制器通常需要消耗约10W的电力,而气缸仅有电磁阀耗电和气体泄露,一般低于1W,即终端停止时间越长,对气缸越有利;其次电机在连续旋转条件下的额定效率可达90%以上,但在直线往复运动(丝杠转换)中的台形加减速旋转条件下的平均效率却不到50%。在竖直往复运动时,夹持工件的保持动作要求不断供给电流给电动执行器以克服重力,而气缸只需关闭电磁阀即可,耗电极少。因此在竖直往复运动时电动执行器相比气缸的能耗优势不是很大。
  由上可见,电机本身效率很高,但在往复直线运动中考虑其效率下降及控制器的电力消耗,电动执行器未必一定比气缸节能,具体比较取决于实际的工作条件,即安装方向、往复运动周期和负载率等。
  应用场合比较
  气动系统和电动系统并不互相排斥。相反,这只是一个要求不同的问题。气动驱动器的优势显而易见,当面临诸如灰尘、油脂、水或清洁剂等恶劣的环境条件时,气动驱动器就显得较适应恶劣环境,而且非常坚固耐用。气动驱动器容易安装,能提供典型的抓取功能,价格便宜且操作方便。
  在作用力快速增大且需要精确定位的情况下,带伺服马达的电驱动器具有优势。对于要求精确、同步运转、可调节和规定的定位编程的应用场合,电驱动器是最好的选择,带闭环定位控制器的伺服或步进马达所组成的电驱动系统能够补充气动系统的不足之处。
  从技术和使用成本的角度来说,气缸占有较明显的优势,但在实际使用中究竟应该选用哪种技术做驱动控制,还是应从多方因素进行综合考量。现代控制中各种系统越来越复杂、越来越精细,并不是某种驱动控制技术就可满足系统的多种控制功能。气缸可以简单的实现快速直线循环运动,结构简单,维护便捷,同时可以在各种恶劣工作环境中使用,如有防爆要求、多粉尘或潮湿的工况。
  电动执行器主要用于需要精密控制的应用场合,自动化设备中柔性化要求在不断提升,同一设备往往要求适应不同尺寸工件的加工需要,执行器需要进行多点定位控制,而且要对执行器的运行速度及力矩进行精确控制或同步跟踪,这些利用传统气动控制是无法实现的,而电动执行器就能非常轻松的实现此类控制。由此可见气缸比较适用于简单的运动控制,而电执行器则多用于精密运动控制的场合。
  市场形势比较
  气缸驱动系统自70年代以来就在工业自动化领域得到了迅速普及。今天,气缸已成为国内外工业生产领域中PTP(PointToPoint)搬运的主流执行器,以气缸驱动系统为核心的气动元器件市场规模已达到110亿美元的规模。
  九十年代开始,电机及其微电子控制技术迅速发展,使电动执行器在工业自动化中的应用成为可能。而且,半导体产业的兴起也直接促进了能实现高精度多点定位的电动执行器在工业领域应用的扩大。
  九十年代末期,日本等主要工业发达国家,甚至一度出现了电动执行器即将取代气缸,气缸将退出历史舞台的论调。因为人们普遍认为电动执行器中电机的能量转换效率高,而气缸能量转换效率较低,低效的产品必将被淘汰出局。然而,十年过去了,电动执行器在工业现场并未得到普及,其市场规模与气动相比还有很大差距。而且,无论是在工业发达国家,还是在中国等新兴工业国家,气缸的销量不仅没有减少,而且还在稳步地增长。在中国,近几年气缸销量的年增长速度一直维持在20%以上。
  如需要科学、客观地评价两者,必须采用全生命周期评价(LifeCycleAssessment)手法,考虑比较制造阶段、使用阶段、废弃阶段三个阶段的综合指标。具体指标有成本、能耗、对环境的负担(主要是排放物等)。譬如成本,电动执行器在运行能耗(使用阶段)成本上有优势,但维护成本(使用阶段)和购置成本(制造阶段)都比气缸要高得多,在该指标上的比较应建立在所有成本的总和上。
  在总成本上,我们的研究结果表明,气缸在大多数工业应用场合具有一定优势。
  综合以上分析,我们应该看出,气缸与电动执行器各有特点,不可单纯地用效率的高低来评价其优劣。随着电气技术的发展,电动执行器的成本还会进一步下降,预期其应用领域还会进一步拓广,但要完自吸无堵塞排污泵全取代气缸是不现实的。
  从市场形式来看,前面己经提到若电缸从一开始就参照气缸的外形及安装连接尺寸生产,是一个很好的开端。而对于还未有ISO标准的无杆气缸和气动滑台,则同样采用相对应的外形及安装连接尺寸,这个便利的措施能够杜绝气驱动与电驱动在安装、添置或更换方面无谓的竞争。FESTO公司的电驱动产品包含了300多种可自由组合的抓取模块和多轴系统。在Festo,电驱动器不是气动驱动器的竞争产品,而是对气动驱动器性能的完美补充。电驱动器的特点是精确和灵活。在作用力快速消失和需要精确定位的应用场合,电驱动器是无堵塞自吸排污泵理想的决方案。
  因此今后气缸与电动执行器[1]的发展应该是处于非常良性状况和互补的,也一定会按照这两门技术自身的科学自然发展规律发展


如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本

开放分类
工业控制    执行器    

参考资料
搜狗百科

贡献者
angelazhang    


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]