索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 杂 志| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

H.264

浏览2816次
随着HDTV的兴起,H.264这个规范频频出现在我们眼前,HD-DVD和蓝光DVD均计划采用这一标准进行节目制作。而且自2005年下半年以来,无论是NVIDIA还是ATI都把支持H.264硬件解码加速作为自己最值得夸耀的视频技术。H.264到底是何方“神圣”呢?
  H.264,同时也是MPEG-4第十部分,是由ITU-T视频编码专家组(VCEG)和ISO/IEC动态图像专家组(MPEG)联合组成的联合视频组(JVT,Joint Video Team)提出的高度压缩数字视频编解码器标准。
  什么是H.264?H.264是一种高性能的视频编解码技术。目前国际上制定视频编解码技术的组织有两个,一个是“国际电联(ITU-T)”,它制定的标准有H.261、H.263、H.263+等,另一个是“国际标准化组织(ISO)”它制定的标准有MPEG-1、MPEG-2、MPEG-4等。而H.264则是由两个组织联合组建的联合视频组(JVT)共同制定的新数字视频编码标准,所以它既是ITU-T的H.264,又是ISO/IEC的MPEG-4高级视频编码(Advanced Video Coding,AVC),而且它将成为MPEG-4标准的第10部分。因此,不论是MPEG-4 AVC、MPEG-4 Part 10,还是ISO/IEC 14496-10,都是指H.264。
  H.264最大的优势是具有很高的数据压缩比率,在同等图像质量的条件下,H.264的压缩比是MPEG-2的2倍以上,是MPEG-4的1.5~2倍。举个例子,原始文件的大小如果为88GB,采用MPEG-2压缩标准压缩后变成3.5GB,压缩比为25∶1,而采用H.264压缩标准压缩后变为879MB,从88GB到879MB,H.264的压缩比达到惊人的102∶1!H.264为什么有那么高的压缩比?低码率(Low Bit Rate)起了重要的作用,和MPEG-2和MPEG-4 ASP等压缩技术相比,H.264压缩技术将大大节省用户的下载时间和数据流量收费。尤其值得一提的是,H.264在具有高压缩比的同时还拥有高质量流畅的图像。
  H.264算法的优势
  H.264是在MPEG-4技术的基础之上建立起来的,其编解码流程主要包括5个部分:帧间和帧内预测(Estimation)、变换(Transform)和反变换、量化(Quantization)和反量化、环路滤波(Loop Filter)、熵编码(Entropy Coding)。
  H.264/MPEG-4 AVC(H.264)是1995年自MPEG-2视频压缩标准发布以后的最新、最有前途的视频压缩标准。H.264是由ITU-T和ISO/IEC的联合开发组共同开发的最新国际视频编码标准。通过该标准,在同等图象质量下的压缩效率比以前的标准提高了2倍以上,因此,H.264被普遍认为是最有影响力的行业标准。
  一、H.264的发展历史
  H.264在1997年ITU的视频编码专家组(Video Coding Experts Group)提出时被称为H.26L,在ITU与ISO合作研究后被称为MPEG4 Part10(MPEG4 AVC)或H.264(JVT)。
  H.264的高级技术背景
  H.264标准的主要目标是:与其它现有的视频编码标准相比,在相同的带宽下提供更加优秀的图象质量。
  而,H.264与以前的国际标准如H.263和MPEG-4相比,最大的优势体现在以下四个方面:
  1. 将每个视频帧分离成由像素组成的块,因此视频帧的编码处理的过程可以达到块的级别。
  2. 采用空间冗余的方法,对视频帧的一些原始块进行空间预测、转换、优化和熵编码(可变长编码)。
  3. 对连续帧的不同块采用临时存放的方法,这样,只需对连续帧中有改变的部分进行编码。该算法采用运动预测和运动补偿来完成。对某些特定的块,在一个或多个已经进行了编码的帧执行搜索来决定块的运动向量,并由此在后面的编码和解码中预测主块。
  4. 采用剩余空间冗余技术,对视频帧里的残留块进行编码。例如:对于源块和相应预测块的不同,再次采用转换、优化和熵编码。
  H.264的特征和高级优势
  H.264是国际标准化组织(ISO)和国际电信联盟(ITU)共同提出的继MPEG4之后的新一代数字视频压缩格式,它即保留了以往压缩技术的优点和精华又具有其他压缩技术无法比拟的许多优点。
  1.低码流(Low Bit Rate):和MPEG2和MPEG4 ASP等压缩技术相比,在同等图像质量下,采用H.264技术压缩后的数据量只有MPEG2的1/8,MPEG4的1/3。
  显然,H.264压缩技术的采用将大大节省用户的下载时间和数据流量收费。
  2.高质量的图象:H.264能提供连续、流畅的高质量图象(DVD质量)。
  3.容错能力强:H.264提供了解决在不稳定网络环境下容易发生的丢包等错误的必要工具。
  4.网络适应性强:H.264提供了网络抽取层(Network Abstraction Layer), 使得H.264的文件能容易地在不同网络上传输(例如互联网,CDMA,GPRS,WCDMA,CDMA2000等)。
  二、H.264标准概述
  H.264和以前的标准一样,也是DPCM加变换编码的混合编码模式。但它采用“回归基本”的简洁设计,不用众多的选项,获得比H.263++好得多的压缩性能;加强了对各种信道的适应能力,采用“网络友好”的结构和语法,有利于对误码和丢包的处理;应用目标范围较宽,以满足不同速率、不同解析度以及不同传输(存储)场合的需求。
  技术上,它集中了以往标准的优点,并吸收了标准制定中积累的经验。与H.263 v2(H.263+)或MPEG-4简单类(Simple Profile)相比,H.264在使用与上述编码方法类似的最佳编码器时,在大多数码率下最多可节省50%的码率。H.264在所有码率下都能持续提供较高的视频质量。H.264能工作在低延时模式以适应实时通信的应用(如视频会议),同时又能很好地工作在没有延时限制的应用,如视频存储和以服务器为基础的视频流式应用。H.264提供包传输网中处理包丢失所需的工具,以及在易误码的无线网中处理比特误码的工具。
  在系统层面上,H.264提出了一个新的概念,在视频编码层(Video Coding Layer, VCL)和网络提取层(Network Abstraction Layer, NAL)之间进行概念性分割,前者是视频内容的核心压缩内容之表述,后者是通过特定类型网络进行递送的表述,这样的结构便于信息的封装和对信息进行更好的优先级控制。H.264的系统编码框图如图1所示。 图1 H.264系统框图
  三、H.264标准的关键技术
  1.帧内预测编码
  帧内编码用来缩减图像的空间冗余。为了提高H.264帧内编码的效率,在给定帧中充分利用相邻宏块的空间相关性,相邻的宏块通常含有相似的属性。因此,在对一给定宏块编码时,首先可以根据周围的宏块预测(典型的是根据左上角的宏块,因为此宏块已经被编码处理),然后对预测值与实际值的差值进行编码,这样,相对于直接对该帧编码而言,可以大大减小码率。
  H.264提供6种模式进行4×4像素宏块预测,包括1种直流预测和5种方向预测,如图2所示。在图中,相邻块的A到I共9个像素均已经被编码,可以被用以预测,如果我们选择模式4,那么,a、b、c、d4个像素被预测为与E相等的值,e、f、g、h4个像素被预测为与F相等的值,对于图像中含有很少空间信息的平坦区,H.264也支持16×16的帧内编码。 图2 帧内编码模式
  2.帧间预测编码
  帧间预测编码利用连续帧中的时间冗余来进行运动估计和补偿。H.264的运动补偿支持以往的视频编码标准中的大部分关键特性,而且灵活地添加了更多的功能,除了支持P帧、B帧外,H.264还支持一种新的流间传送帧——SP帧,如图3所示。码流中包含SP帧后,能在有类似内容但有不同码率的码流之间快速切换,同时支持随机接入和快速回放模式。图3 SP-帧示意图H.264的运动估计有以下4个特性。
  (1)不同大小和形状的宏块分割
  对每一个16×16像素宏块的运动补偿可以采用不同的大小和形状,H.264支持7种模式,如图4所示。小块模式的运动补偿为运动详细信息的处理提高了性能,减少了方块效应,提高了图像的质量。图4 宏块分割方法
  (2)高精度的亚像素运动补偿
  在H.263中采用的是半像素精度的运动估计,而在H.264中可以采用1/4或者1/8像素精度的运动估值。在要求相同精度的情况下,H.264使用1/4或者1/8像素精度的运动估计后的残差要比H.263采用半像素精度运动估计后的残差来得小。这样在相同精度下,H.264在帧间编码中所需的码率更小。
  (3)多帧预测
  H.264提供可选的多帧预测功能,在帧间编码时,可选5个不同的参考帧,提供了更好的纠错性能,这样更可以改善视频图像质量。这一特性主要应用于以下场合:周期性的运动、平移运动、在两个不同的场景之间来回变换摄像机的镜头。
  (4)去块滤波器
  H.264定义了自适应去除块效应的滤波器,这可以处理预测环路中的水平和垂直块边缘,大大减少了方块效应。
  3.整数变换
  在变换方面,H.264使用了基于4×4像素块的类似于DCT的变换,但使用的是以整数为基础的空间变换,不存在反变换,因为取舍而存在误差的问题,变换矩阵如图5所示。与浮点运算相比,整数DCT变换会引起一些额外的误差,但因为DCT变换后的量化也存在量化误差,与之相比,整数DCT变换引起的量化误差影响并不大。此外,整数DCT变换还具有减少运算量和复杂度,有利于向定点DSP移植的优点。
  4.量化
  H.264中可选32种不同的量化步长,这与H.263中有31个量化步长很相似,但是在H.264中,步长是以12.5%的复合率递进的,而不是一个固定常数。
  在H.264中,变换系数的读出方式也有两种:之字形(Zigzag)扫描和双扫描,如图6所示。大多数情况下使用简单的之字形扫描;双扫描仅用于使用较小量化级的块内,有助于提高编码效率。图6 变换系数的读出方式
  5.熵编码
  视频编码处理的最后一步就是熵编码,在H.264中采用了两种不同的熵编码方法:通用可变长编码(UVLC)和基于文本的自适应二进制算术编码(CABAC)。
  在H.263等标准中,根据要编码的数据类型如变换系数、运动矢量等,采用不同的VLC码表。H.264中的UVLC码表提供了一个简单的方法,不管符号表述什么类型的数据,都使用统一变字长编码表。其优点是简单;缺点是单一的码表是从概率统计分布模型得出的,没有考虑编码符号间的相关性,在中高码率时效果不是很好。
  因此,H.264中还提供了可选的CABAC方法。算术编码使编码和解码两边都能使用所有句法元素(变换系数、运动矢量)的概率模型。为了提高算术编码的效率,通过内容建模的过程,使基本概率模型能适应随视频帧而改变的统计特性。内容建模提供了编码符号的条件概率估计,利用合适的内容模型,存在于符号间的相关性可以通过选择目前要编码符号邻近的已编码符号的相应概率模型来去除,不同的句法元素通常保持不同的模型。
  四、H.264在视频会议中的应用
  目前,大多数的视频会议系统均采用H.261或H.263视频编码标准,而H.264的出现,使得在同等速率下,H.264能够比H.263减小50%的码率。也就是说,用户即使是只利用 384kbit/s的带宽,就可以享受H.263下高达 768kbit/s的高质量视频服务。H.264 不但有助于节省庞大开支,还可以提高资源的使用效率,同时令达到商业质量的视频会议服务拥有更多的潜在客户。
  目前,已经有少数几家厂商的视频会议产品支持H.264协议,厂商们致力于普及H.264这个全新的业界标准。随着其它视频会议方案厂商陆续效仿他们的做法,我们必将能全面体验H.264视频服务的优势。
  五、H.264的技术亮点1、分层设计
  H.264的算法在概念上可以分为两层:视频编码层(VCL:Video Coding Layer)负责高效的视频内容表示,网络提取层(NAL:Network Abstraction Layer)负责以网络所要求的恰当的方式对数据进行打包和传送。在VCL和NAL之间定义了一个基于分组方式的接口,打包和相应的信令属于NAL的一部分。这样,高编码效率和网络友好性的任务分别由VCL和NAL来完成。
  VCL层包括基于块的运动补偿混合编码和一些新特性。与前面的视频编码标准一样,H.264没有把前处理和后处理等功能包括在草案中,这样可以增加标准的灵活性。
  NAL负责使用下层网络的分段格式来封装数据,包括组帧、逻辑信道的信令、定时信息的利用或序列结束信号等。例如,NAL支持视频在电路交换信道上的传输格式,支持视频在Internet上利用RTP/UDP/IP传输的格式。NAL包括自己的头部信息、段结构信息和实际载荷信息,即上层的VCL数据。(如果采用数据分割技术,数据可能由几个部分组成)。
  2、高精度、多模式运动估计
  H.264支持1/4或1/8像素精度的运动矢量。在1/4像素精度时可使用6抽头滤波器来减少高频噪声,对于1/8像素精度的运动矢量,可使用更为复杂的8抽头的滤波器。在进行运动估计时,编码器还可选择"增强"内插滤波器来提高预测的效果。
  在H.264的运动预测中,一个宏块(MB)可以按图2被分为不同的子块,形成7种不同模式的块尺寸。这种多模式的灵活和细致的划分,更切合图像中实际运动物体的形状,大大提高了运动估计的精确程度。在这种方式下,在每个宏块中可以包含有1、2、4、8或16个运动矢量。
  在H.264中,允许编码器使用多于一帧的先前帧用于运动估计,这就是所谓的多帧参考技术。例如2帧或3帧刚刚编码好的参考帧,编码器将选择对每个目标宏块能给出更好的预测帧,并为每一宏块指示是哪一帧被用于预测。
  3、4×4块的整数变换
  H.264与先前的标准相似,对残差采用基于块的变换编码,但变换是整数操作而不是实数运算,其过程和DCT基本相似。这种方法的优点在于:在编码器中和解码器中允许精度相同的变换和反变换,便于使用简单的定点运算方式。也就是说,这里没有"反变换误差"。 变换的单位是4×4块,而不是以往常用的8×8块。由于用于变换块的尺寸缩小,运动物体的划分更精确,这样,不但变换计算量比较小,而且在运动物体边缘处的衔接误差也大为减小。为了使小尺寸块的变换方式对图像中较大面积的平滑区域不产生块之间的灰度差异,可对帧内宏块亮度数据的16个4×4块的DC系数(每个小块一个,共16个)进行第二次4×4块的变换,对色度数据的4个4×4块的DC系数(每个小块一个,共4个)进行2×2块的变换。
  H.264为了提高码率控制的能力,量化步长的变化的幅度控制在12.5%左右,而不是以不变的增幅变化。变换系数幅度的归一化被放在反量化过程中处理以减少计算的复杂性。为了强调彩色的逼真性,对色度系数采用了较小量化步长。
  4、统一的VLC
  H.264中熵编码有两种方法,一种是对所有的待编码的符号采用统一的VLC(UVLC :Universal VLC),另一种是采用内容自适应的二进制算术编码(CABAC:Context-Adaptive Binary Arithmetic Coding)。CABAC是可选项,其编码性能比UVLC稍好,但计算复杂度也高。UVLC使用一个长度无限的码字集,设计结构非常有规则,用相同的码表可以对不同的对象进行编码。这种方法很容易产生一个码字,而解码器也很容易地识别码字的前缀,UVLC在发生比特错误时能快速获得重同步。
  5、帧内预测
  在先前的H.26x系列和MPEG-x系列标准中,都是采用的帧间预测的方式。在H.264中,当编码Intra图像时可用帧内预测。对于每个4×4块(除了边缘块特别处置以外),每
  个像素都可用17个最接近的先前已编码的像素的不同加权和(有的权值可为0)来预测,即此像素所在块的左上角的17个像素。显然,这种帧内预测不是在时间上,而是在空间域上进行的预测编码算法,可以除去相邻块之间的空间冗余度,取得更为有效的压缩。
  如图4所示,4×4方块中a、b、...、p为16 个待预测的像素点,而A、B、...、P是已编码的像素。如m点的值可以由(J+2K+L+2)/ 4 式来预测,也可以由(A+B+C+D+I+J+K+L)/ 8 式来预测,等等。按照所选取的预测参考的点不同,亮度共有9类不同的模式,但色度的帧内预测只有1类模式。
  6、面向IP和无线环境
  H.264 草案中包含了用于差错消除的工具,便于压缩视频在误码、丢包多发环境中传输,如移动信道或IP信道中传输的健壮性。
  为了抵御传输差错,H.264视频流中的时间同步可以通过采用帧内图像刷新来完成,空间同步由条结构编码(slice structured coding)来支持。同时为了便于误码以后的再同步,在一幅图像的视频数据中还提供了一定的重同步点。另外,帧内宏块刷新和多参考宏块允许编码器在决定宏块模式的时候不仅可以考虑编码效率,还可以考虑传输信道的特性。
  除了利用量化步长的改变来适应信道码率外,在H.264中,还常利用数据分割的方法来应对信道码率的变化。从总体上说,数据分割的概念就是在编码器中生成具有不同优先级的视频数据以支持网络中的服务质量QoS。例如采用基于语法的数据分割(syntax-based data partitioning)方法,将每帧数据的按其重要性分为几部分,这样允许在缓冲区溢出时丢弃不太重要的信息。还可以采用类似的时间数据分割(temporal data partitioning)方法,通过在P帧和B帧中使用多个参考帧来完成。
  在无线通信的应用中,我们可以通过改变每一帧的量化精度或空间/时间分辨率来支持无线信道的大比特率变化。可是,在多播的情况下,要求编码器对变化的各种比特率进行响应是不可能的。因此,不同于MPEG-4中采用的精细分级编码FGS(Fine Granular Scalability)的方法(效率比较低),H.264采用流切换的SP帧来代替分级编码。
  六、 H.264的性能比较
  TML-8为H.264的测试模式,用它来对H.264的视频编码效率进行比较和测试。测试结果所提供的PSNR已清楚地表明,相对于MPEG-4(ASP:Advanced Simple Profile)和H.263++(HLP:High Latency Profile)的性能,H.264的结果具有明显的优越性。
  H.264的PSNR比MPEG-4(ASP)和H.263++(HLP)明显要好,在6种速率的对比测试中,H.264的PSNR比MPEG-4(ASP)平均要高2dB,比H.263(HLP)平均要高3dB。6个测试速率及其相关的条件分别为:32 kbit/s速率、10f/s帧率和QCIF格式;64 kbit/s速率、15f/s帧率和QCIF格式;128kbit/s速率、15f/s帧率和CIF格式;256kbit/s速率、15f/s帧率和QCIF格式;512 kbit/s速率、30f/s帧率和CIF格式;1024 kbit/s速率、30f/s帧率和CIF格式。


如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本
开放分类
H.264    

参考资料

贡献者
cuipeng    


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]