索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 专 刊| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

EEPW首页 > 百科 > LED荧光粉

LED荧光粉


贡献者:dolphin    浏览:1904次    创建时间:2014-06-11

LED荧光粉  LED荧光粉在实现白光发射领域应用最广泛。LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要,在彩色LED 中也能得到一定的应用。

  首先,即使不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利 用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制 备出一种效率较高,被其称为苹果绿的LED用于手机背光源,取得了较好的经济效益。

  其次,LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm的LED时,可能制备出来的是从455nm到480nm范围很宽的LED, 发光波长在两端的LED只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的废品转化成我们所需要的颜色而得到利用。

  第三,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要。当然,荧光粉在LED上最广泛的应用还是在白光领域,但由于其特 殊的优点,在彩色LED中也能得到一定的应用,但荧光粉在彩色LED上的应用还刚刚起步,需要进一步进行深入的研究和开发。

  LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED在照明领域的应用。

  第一种方法是在蓝色LED芯片上涂敷能被蓝光激发的(YAG)黄色荧光粉,芯片发出的蓝光与荧光粉发出的黄光互补形成白光。该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就 是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改善。

  第二种实现方法是蓝色LED芯片上涂覆绿色和红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。

  第三种实现方法是在紫光或紫外光LED芯片上涂敷三基色或多种颜色的荧光粉,利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm -410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体 系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。

  我们是国内率先进行LED用高效低光衰荧光粉研究的研究机构。最近,通过与我国台湾合作伙伴的联合攻关,多种采用荧光粉的彩色LED被开发出来了。

  黄色荧光粉:

  在白光LED 的产生方式中,以“ 蓝光LED + 黄色荧光粉” 的技术最为 成熟,这也是目前商品化白光LED 产品的主要实现形式,其中所用的黄 色荧光粉多为业界所熟悉的铝酸盐YAG:Ce 和TAG:Ce。这两者比较起来, 前者的发光效率好,是公认的发光效率最高的半导体照明用荧光粉,利 用其与蓝光LED可以制得色温在4000k-8000k的高亮度白光LED;后者的应 用面较窄,高比例的Tb3+较适合在低于5000k的低色温白光LED.近年来开 发研究成功的LED黄色荧光粉还有硅酸盐如:(Sr,Ba,Ca)2SiO4:Eu。此外 还有硅基氮氧化物(ɑ-Sialon:Eu),它们除了可以被蓝光激发外,还可以 被紫外或者紫外LED有效激发;其中硅酸盐荧光粉开发相对成熟,硅基氮 氧化物荧光粉的制成困难,未见正式产品推出。

  红色荧光粉:

  红色荧光粉除了与蓝光LED及绿色荧光粉配合产生白光,或者与绿、蓝 色荧光粉及紫光或者紫外LED配合产生白光外,还常用于补偿YAG:Ce+ 蓝光LED中的红色缺乏,以提高显色指数或者降低色温。一直以来红色 荧光粉多局限于碱土金属硫化物系列,这类荧光粉的物理化学性质极 不稳定,热稳定性差,光衰大。近年来开发出的新型红色荧光粉有硅 酸盐,钨钼酸盐、铝酸盐及氮(氧)化物荧光体。其中硅酸盐,钨钼 酸盐、铝酸盐的稳定性满足了要求,但它们的有效激发不是太窄,对 芯片要求苛刻,发光效率偏低。硅基氮氧化物荧光粉(如: MxSiyNz:EuM=Ca,Sr,Ba;z=2/3x+4/3y>) 无论是稳定性还是发光效率 等方面,均能很好的满足LED的要求。由于氮化物的相对惰性,硅基氮 氧化物荧光粉的合成通常需要高温高压等苛刻条件,这极大制约了该 系列荧光粉的应用,造成此种荧光粉的价格昂贵。

  绿色荧光粉:

  绿色荧光粉既是组成白光LED三基色的一个重要组分,同时也可以直接与 LED封装制得绿光LED.目前制作高亮绿色LED的重要方式就是这种方式。目 前LED用绿色荧光粉主要有:MN2S2:Eu(M=Ba,Sr,Ca;N=Al,Ca,In)、 Ca8Mg(SiO4)4Cl:Eu,R、BaMgAl10O17:Eu,Mn等。其中MN2S2:Eu·的发光效率最 高,发光的波长也可以通过调整其中碱土金属离子比例在507-558nm之间变 化,但是含硫元素的缺点较大的限制了其发展。近来有文献报道硅基氮氧 化物的绿色荧光粉,如β—SiAlON:Eu、SrSi2O2N2:Eu等,它们同样可以 被紫外、紫光或蓝光LED有效激发,且无硫的污染,显示出极大的发展潜力。

  1.实现白光发射

  LED灯被誉为第四代光源,其中白光源毫无疑问是需求量最大的,所以LED 荧光粉在实现白光发射领域应用最广泛。LED实现白光有多种方式,而开发较早、已实现产业化的方式是在LED芯片上涂敷荧光粉而实现白光发射。

  LED采用荧光粉实现白光主要有三种方法,但它们并没有完全成熟,由此严重地影响白光LED 在照明领域的应用。

  第一种方法:蓝光LED芯片+黄色荧光粉,该技术被日本Nichia公司垄断,而且这种方案的一个原理性的缺点就是该荧光体中Ce3+离子的发射光谱不具连续光谱特性,显色性较差,难以满足低色温照明的要求,同时发光效率还不够高,需要通过开发新型的高效荧光粉来改善。

  第二种方法:蓝光 LED+绿色荧光粉+红色荧光粉,通过芯片发出的蓝光与荧光粉发出的绿光和红光复合得到白光,显色性较好。但是,这种方法所用荧光粉有效转换效率较低,尤其是红色荧光粉的效率需要较大幅度的提高。

  第三种方法:紫光 LED+三基色荧光粉(多种颜色的荧光粉),利用该芯片发射的长波紫外光(370nm-380nm)或紫光(380nm-410nm)来激发荧光粉而实现白光发射,该方法显色性更好,但同样存在和第二种方法相似的问题,且目前转换效率较高的红色和绿色荧光粉多为硫化物体 系,这类荧光粉发光稳定性差、光衰较大,因此开发高效的、低光衰的白光LED用荧光粉已成为一项迫在眉睫的工作。

  2.利用某波段 LED发光效率高的优点制备其它波段 LED

  虽然不使用荧光粉,就能制备出红、黄、绿、蓝、紫等不同颜色的彩色LED,但由于这些不同颜色LED的发光效率相差很大,采用荧光粉以后,可以利用某些波段LED发光效率高的优点来制备其他波段的LED,以提高该波段的发光效率。例如有些绿色波段的LED效率较低,台湾厂商利用我们提供的荧光粉制 备出一种效率较高,被其称为苹果绿的LED用于手机背光源,取得了较好的经济效益。

  3.让 LED光色更柔和、鲜艳

  虽然在LED上最广泛的应用还是在白光领域,但由于其特殊的优点,采用荧光粉以后,有些LED的光色会变得更加柔和或鲜艳,以适应不同的应用需要,在彩色LED 中也能得到一定的应用,但荧光粉在彩色 LED 上的应用还刚刚起步,需要进一步进行深入的研究和开发。

  4.将发光波长有误差的LED重新利用

  LED的发光波长现在还很难精确控制,因而会造成有些波长的LED得不到应用而出现浪费,例如需要制备470nm 的 LED时,可能制备出来的是从455nm 到480nm 范围很宽的LED,发光波长在两端的 LED 只能以较低廉的价格处理掉或者废弃,而采用荧光粉可以将这些所谓的废品转化成我们所需要的颜色而得到利用。



如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本

开放分类
    

参考资料

贡献者
dolphin    


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]