人脸检测技术
- 目录
1 来源
2 定义
3 难点
4 研究现状
5 技术应用
来源
人脸检测是自动人脸识别系统中的一个关键环节。早期的人脸识别研究主要针对具有较强约束条件的人脸图象(如无背景的图象),往往假设人脸位置一直或者容易获得,因此人脸检测问题并未受到重视。
随着电子商务等应用的发展,人脸识别成为最有潜力的生物身份验证手段,这种应用背景要求自动人脸识别系统能够对一般图象具有一定的识别能力,由此所面临的一系列问题使得人脸检测开始作为一个独立的课题受到研究者的重视。今天,人脸检测的应用背景已经远远超出了人脸识别系统的范畴,在基于内容的检索、数字视频处理、视频检测等方面有着重要的应用价值。
定义
人脸检测是指对于任意一幅给定的图像,采用一定的策略对其进行搜索以确定其中是否含有人脸,如果是则返回一脸的位置、大小和姿态。
难点
人脸检测是一个复杂的具有挑战性的模式检测问题,其主要的难点有两方面,一方面是由于人脸内在的变化所引起:(1)人脸具有相当复杂的细节变化,不同的外貌如脸形、肤色等,不同的表情如眼、嘴的开与闭等;(2)人脸的遮挡,如眼镜、头发和头部饰物以及其他外部物体等;另外一方面由于外在条件变化所引起:(1)由于成像角度的不同造成人脸的多姿态,如平面内旋转、深度旋转以及上下旋转,其中深度旋转影响较大;(2)光照的影响,如图像中的亮度、对比度的变化和阴影等。(3)图像的成像条件,如摄像设备的焦距、成像距离,图像获得的途径等等。
这些困难都为解决人脸问题造成了难度。如果能找到一些相关的算法并能在应用过程中达到实时,将为成功构造出具有实际应用价值的人脸检测与跟踪系统提供保证。
研究现状
国外对人脸检测问题的研究很多,比较著名的有MIT,CMU等;国内的清华大学、中科院计算所和自动化所、南京理工大学、北京工业大学等都有人员从事人脸检测相关的研究。而且,MPEG7标准组织已经建立了人脸识别草案小组,人脸检测算法也是一项征集的内容。随着人脸检测研究的深入,国际上发表的有关论文数量也大幅度增长,如IEEE的FG、ICIP\CVPR等重要国际会议上每年都有大量关于人脸检测的论文,占有关人脸研究论文的1/3之多。由此可以看到世界对人脸检测技术的重视。
技术应用
每个人都有一张脸,而且是一个人最重要的外貌特征。这种技术最热门的应用领域有三个方面:
第一,身份认证与安全防护。在这个世界上,只要有门的地方几乎都带有一把锁。当然,在许多安全级别要求较高的区域,例如金融机构、机关办公大楼、运动场馆、甚至重要设施的工地,都需要对大量的人员进行基于身份认证的门禁管理。手机、笔记本电脑等个人电子用品,在开机和使用中经常要用到身份验证功能。
第二,媒体与娱乐。人们的许多娱乐活动都是跟脸部有关的。最著名的娱乐节目之一就是川剧的变脸。在网络虚拟世界里,通过人脸的变化,可以产生大量的娱乐节目和效果。手机、数码相机等消费电子产品中,基于人脸的娱乐项目越来越丰富。QQ、MSN等即时通信工具以及虚拟化身网络游戏也是人脸合成技术的广阔市场。
第三,图像搜索。传统搜索引擎的图像搜索其实还是文字搜索。基于人脸图像识别技术的搜索引擎将会具有广泛的应用前景。而且大部分以图片作为输入的搜索引擎,例如tineye(2008年上线)、搜狗识图(2011年上线)等,本质上是进行图片近似拷贝检测,即搜索看起来几乎完全一样的图片。2010年推出的百度识图也是如此,在经历两年多的沉寂之后,百度识图开始向另一个方向探索。与之前的区别在于,如果用户给出一张图片,百度识图会判断里面是否出现人脸,如果有,百度识图在相似图片搜索之外,同时会全网寻找出现过的类似人像。
新增加的技术简而言之,首先是人脸检测并提取出特征表达,随后再据此进行数据库对比,最后按照相似度排序返回结果。其实,人脸检测并不是新技术,相关研究已有三十年历史,然而直到去年底,百度才决定推动这一技术付诸实施。
全球60亿人口,人脸相关技术应用前景不可限量!
开放分类
贡献者