索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 专 刊| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

开放分类包含“ 基本物理概念”的词条:

电磁波谱 2009-09-24 sean2008
电磁波谱-内容 电磁波谱电磁波谱包含电磁波所有可能的频率和波长的范围。特定波长(λ)的电磁波的能量(E)(在真空中)与频率(ν)和光速(c)有关。 这些物理量的关系如下: (波长λ)=(c)/(频率ν) ;[c是光速 (3×108 公尺/秒)] (能量E)=(h)?(频率ν) ;[h是普朗克常数(6.626 × 10?34 焦耳?秒)] 在另一个单位中h = 4.136
共振峰 2009-08-30 xqh0813
共振峰因共鸣作用而能量变强的频率成分就叫共振峰。
天线增益 2009-08-29 xqh0813
天线增益-含义介绍 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。增益显然与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。 可以这样来理解增益的物理含义 ------ 为在一定的距离上的某点处产生一定大小的信号,如果用理想的无方向性点源作为发射天线,需要 100W
空气动力 2009-08-29 xqh0813
最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。 目录 [隐藏] 1 简介 2 发展简史 3 研究内容
主动控制技术 2009-08-29 xqh0813
主动控制技术 主动控制技术(Active Control Technology),是由美国率先提出的一种飞机设计和控制技术。从飞机设计的角度来说,主动控制技术就是在飞机设计的初始阶段就考虑到电传飞行控制系统对总体设计的影响,充分发挥飞行控制系统潜力的一种飞行控制技术。F-16是世界上第一架采用主动控制思想设计的飞机。 采用主动控制技术的设计方法和常规设计方法有什么不同呢?我们就从常规的飞机设
电机 2009-08-28 xqh0813
电机是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。电机也称电机(俗称马达),在电路中用字母“M”(旧标准用“D”)表示。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。 目录 [隐藏] 1 种类区分 2 直流电机 3 永磁式 4 无刷直流 5 交流异步 6 单相异步 7 三相异步 8 罩极式 9 单相串励 10 交流电机 11
反物质 2009-08-28 mindy918
反物质-反物质 反物质 反物质就是由反粒子组成的物质。所有的粒子都有反粒子,这些反粒子的特点是其质量、寿命、自旋、同位旋与相应的粒子相同,但电荷、重子数、轻子数、奇异数等量子数与之相反。反质子、反中子和反电子如果像质子、中子、电子那样结合起来就形成了反原子。由反原子构成的物质就是反物质。当你照镜子时,镜中的那个你如果真的存在,并出现在你面前,会怎么样呢?科学家们已经考虑过这个问
兰姆凹陷 2009-08-23 xqh0813
兰姆凹陷的发现和应用是科学与技术,理论与实践密切结合取得重要成果的又一个极好例证。 He-Ne激光器发明两年后,1962年,兰姆位移的发现者,诺贝尔物理奖得主小W.E.兰姆教授正在耶鲁大学对氦氖激光器作理论分析。他的目的是要根据原子在电磁场作用下振荡的经典模型,计算激光强度随空腔参数改变的关系。他原来预计,空腔原子有一定的自然跃迁频率,当空腔频率与原子跃迁频率一致时,会因为谐振而使激光强度达
介电损耗 2009-08-23 xqh0813
dielectric loss 电介质在交变电场中,由于消耗部分电能而使电解质本身发热的现象。原因,电解质中含有能导电的载流子,在外加电场作用下,产生导电电流,消耗掉一部分电能,转为热能。 表示绝缘材料(如绝缘油料)质量的指标之一。绝缘材料(如变压器油)在电压作用下所引起的能量损耗。介电损耗愈小,绝缘材料的质量愈好,绝缘性能也愈好。通常用介电损耗角正切衡量。工业频率下的介电损耗角正切一般用西
航天器姿态敏感器 2009-08-23 xqh0813
航天器姿态控制系统的测量部件。它获取航天器的姿态信息,输出与姿态参数成函数关系的电量。按获取姿态信息的方法,姿态敏感器分为光学敏感器、惯性敏感器、射频敏感器和磁敏感器等几类。 ①光学敏感器:对某些姿态参考源(主要是天体)发出或反射的光辐射敏感,并借此获取航天器相对于这些参考源的姿态信息。光学敏感器按参考源分类有地球敏感器、太阳敏感器、恒星敏感器、月球敏感器和行星敏感器等。光学敏感器与许多光学仪