索阅 100例 首 页| 资 讯| 下 载| 论 坛| 博 客| Webinar| 高 校| 专 刊| 会展| EETV| 百科| 问答| 电路图| 工程师手册| Datasheet

EEPW首页 > 百科 > 加法器

加法器


贡献者:不爱吃窝瓜    浏览:1047次    创建时间:2015-10-29

  目录
  1 简介
  2 基本方法
  3 工作原理
  4 类型
  5 结构设计
  6 逻辑优化
  简介
  加法器是为了实现加法的。
  即是产生数的和的装置。加数和被加数为输入,和数与进位为输出的装置为半加器。若加数、被加数与低位的进位数为输入,而和数与进位为输出则为全加器。常用作计算机算术逻辑部件,执行逻辑操作、移位与指令调用。
  对于1位的二进制加法,相关的有五个的量:1,被加数A,2,被加数B,3,前一位的进位CIN,4,此位二数相加的和S,5,此位二数相加产生的进位COUT。前三个量为输入量,后两个量为输出量,五个量均为1位。
  对于32位的二进制加法,相关的也有五个量:1,被加数A(32位),2,被加数B(32位),3,前一位的进位CIN(1位),4,此位二数相加的和S(32位),5,此位二数相加产生的进位COUT(1位)。
  要实现32位的二进制加法,一种自然的想法就是将1位的二进制加法重复32次(即逐位进位加法器)。这样做无疑是可行且易行的,但由于每一位的CIN都是由前一位的COUT提供的,所以第2位必须在第1位计算出结果后,才能开始计算;第3位必须在第2位计算出结果后,才能开始计算,等等。而最后的第32位必须在前31位全部计算出结果后,才能开始计算。这样的方法,使得实现32位的二进制加法所需的时间是实现1位的二进制加法的时间的32倍。
  基本方法
  可以看出,上法是将32位的加法1位1位串行进行的,要缩短进行的时间,就应设法使上叙进行过程并行化。
  逐位进位加法器,在每一位的计算时,都在等待前一位的进位。那么不妨预先考虑进位输入的所有可能,对于二进制加法来说,就是0与1两种可能,并提前计算出若干位针对这两种可能性的结果。等到前一位的进位来到时,可以通过一个双路开关选出输出结果。这就是进位选择加法器的思想。
  提前计算多少位的数据为宜?同为32位的情况:线形进位选择加法器,方法是分N级,每级计算32/N位;平方根进位选择加法器,考虑到使两个路径(1,提前计算出若干位针对这两种可能性的结果的路径,2,上一位的进位通过前面的结构的路径)的延时达到相等或是近似。方法,或是2345666即第一级相加2位,第二级3位,第三级4位,第四级5位,第五级6位,第六级6位,第七级6位;或是345677即第一级相加3位,第二级4位,第三级5位,第四级6位,第五级7位,第六级7位。
  进一步分析加法进行的机制,可以使加法器的结构进一步并行化。
  令G = AB,P = A⊕B,则COUT(G,P) = G + PCIN,S(G,P)=P⊕CIN。由此,A,B,CIN,S,COUT五者的关系,变为了G,P,CIN,S,COUT五者的关系。
  再定义点运算(·),(G,P)·(G’,P’)=(G + PG’,PP’),可以分解(G 3:2,P3:2) =(G3,P3)·(G2,P2)。点运算服从结合律,但不符合交换律。
  点运算只与G,P有关而与CIN无关,也就是可以通过只对前面若干位G,P进行点运算计算,就能得到第N位的GN:M,PN:M值,当取M为0时,获得的GN:0,PN:0即可与初使的CIN一起代入COUT(G,P) = G + PCIN,S(G,P)=P⊕CIN,得到此位的COUT,S;而每一位的G,P值又只与该位的A,B值即输入值有关,所以在开始进行运算后,就能并行的得到每一位的G,P值。
  以上分析产生了超前进位加法器的思想:三步运算,1,由输入的A,B算出每一位的G,P;2,由各位的G,P算出每一位的GN:0,PN:0;3,由每一位的GN:0,PN:0与CIN算出每一位的COUT,S。其中第1,3步显然是可以并行处理的,计算的主要复杂度集中在了第2步。
  第2步的并行化,也就是实现GN:0,PN:0的点运算分解的并行化。
  工作原理
  设一个n位的加法器的第i位输入为ai、bi、ci,输出si和ci+1,其中ci是低位来的进位,ci+1(i=n-1,n-2,…,1,0)是向高位的进位,c0是整个加法器的进位输入,而cn是整个加法器的进位输出。则和
  si=aiii+ibii+iici+aibici ,(1)
  进位ci+1=aibi+aici+bici ,(2)
  令 gi=aibi, (3)
  pi=ai+bi, (4)
  则 ci+1= gi+pici, (5)
  只要aibi=1,就会产生向i+1位的进位,称g为进位产生函数;同样,只要ai+bi=1,就会把ci传递到i+1位,所以称p为进位传递函数。把式(5)展开,得到:ci+1= gi+ pigi-1+pipi-1gi-2+…+ pipi-1…p1g0+ pipi-1…p0c0(6) 。
  随着位数的增加式(6)会加长,但总保持三个逻辑级的深度,因此形成进位的延迟是与位数无关的常数。一旦进位(c1~cn-1)算出以后,和也就可由式(1)得出。
  使用上述公式来并行产生所有进位的加法器就是超前进位加法器。产生gi和pi需要一级门延迟,ci 需要两级,si需要两级,总共需要五级门延迟。与串联加法器(一般要2n级门延迟)相比,(特别是n比较大的时候)超前进位加法器的延迟时间大大缩短了。
  类型
  以单位元的加法器来说,有两种基本的类型:半加器和全加器
  ,半加器有两个输入和两个输出,输入可以标识为 A、B 或 X、Y,输出通常标识为合 S 和进制 C。A 和 B 经 XOR 运算后即为 S,经 AND 运算后即为 C。
  全加器引入了进制值的输入,以计算较大的数。为区分全加器的两个进制线,在输入端的记作 Ci 或 Cin,在输出端的则记作 Co 或 Cout。半加器简写为 H.A.,全加器简写为 F.A.。
  半加器:半加器的电路图半加器有两个二进制的输入,其将输入的值相加,并输出结果到和(Sum)和进制(Carry)。半加器虽能产生进制值,但半加器本身并不能处理进制值。
  全加器:全加器三个二进制的输入,其中一个是进制值的输入,所以全加器可以处理进制值。全加器可以用两个半加器组合而成。
  注意,进制输出端的最末个OR闸,也可用XOR闸来代替,且无需更改其余的部分。因为 OR 闸和 XOR 闸只有当输入皆为 1 时才有差别,而这个可能性已不存在。
  结构设计
  直接使用式(6)形成的电路是不规则的,并且需要长线驱动,需要大驱动信号和大扇入门。当位数较多时,这种实现方式不太现实。
  可以改进超前进位电路,使其具有规则性。对于一个n位(n>4)的加法器,按4位一组的形式对其分组,组内实行超前进位,组间也实行超前进位。相应地超前进位逻辑需要分级,级的数目L=Log4(n)。如图1所示,第m(0~n-1)位的g,p可以表示为:g4k+j=a4k+jb4k+j,p4k+j=a4k+j+b4k+j;k为(m/4)的商
  位置;j为余数,代表该位在该组中的位置。各个4位CLA的组进位产生函数G4k+3, 4k = g4k+3 + p4k+3 g4k+2 + p4k+3p4k+2g4k+1 +p4k+3p4k+2p4k+1g4k ;组进位传递函数P4k+3, 4k = p4k+3 p4k+2 p4k+1 p4k ;组进位C4k+4 = G4k+3, 4k + P4k+3, 4k c4k。
  每个4位的CLA模块分别计算各组内每一位的p、 g和组间的P、G,第二级LACG(look ahead carry generator)根据各组(包含第一级LACG逻辑)的P、G和c0计算出各组间的进位C4k+4 ,同样,第三级LACG则根据第二级的P、G和c0计算出向高4组的进位C16k+16,依此类推。计算出的所有组进位都要送回各个4位的CLA模块,并行算出每一位的和。
  改造后,CLA的延时包括:用式(3)和式(4)产生pi和gi的1级门延时;用超前进位电路产生所有进位的2(2L-1)级门延时;用 (1) 式计算si的2级门延时。于是总的延时为[2] :
  Delay(CLA adder)=1+4Log4(n) (7)
  与简单的串联加法器相比,超前进位加法器需要较多的逻辑电路来产生进位位。但它的延迟时间的数量级为log4(n)。当n较大时,速度的改进是很明显的。
  逻辑优化
  逻辑优化设计的主要目的是减少信号的翻转活动[3],它通过将电路的逻辑功能尽可能的分解、优化, 减少逻辑深度,减少信号假翻转,从而使翻转活动最小,减小电路的功耗。
  令gsi=ai⊙bi ,则式(1)可以改写为si= gsi⊙ci ,先考察第一组CLA
  s0=gs0⊙c0 (8)
  s1=gs1⊙c1=gs1⊙(g0+p0c0) (9)
  s2=gs2⊙c2=gs2⊙(g1+p1g0+p1p0c0) (10)
  s3=gs3⊙c3=gs3⊙(g2+p2g1+p2p1g0+p2p1p0c0)(11)
  因为g, p的值只有“00”、“01”、“11”这三种组合,结合布尔代数性质A⊙0=、A⊙1=A可知,s3的值最终可以归结为3个表达式:gs3, 3和(gs3⊙c0),同样,s2值的3个表达式为gs2, 2和(gs2⊙c0),s1为gs1, 1和(gs1⊙c0)。于是式(8)至式(11)就可以化为
  s0=c0(gs0)+ 0 (0) (12)
  s1=c0(gs1⊙p0)+0(gs1⊙g0) (13)
  s2=c0(gs2⊙(g1+p1p0))+ 0 (gs2⊙(g1+p1g0))(14)
  s3=c0(gs3⊙(g2+p2g1+p2p1p0))
  +0(gs3⊙(g2+p2g1+p2p1g0)) (15)
  其他组,如s4~s7、s8~s11等,情况和s0~s3一样。
  逻辑改造后,在进位产生逻辑上可以减少一些不必要的翻转,减少了节点开关活动率,并且可以重复利用g,p积之和的相同部分,达到路径平衡的效果,可以有效地消除假翻转(glitch),同时与门和或门的最大扇入都减少了一个,较大程度地减小了功耗。


如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请编辑词条     查看历史版本

开放分类
加法器    原理概念    

参考资料
百度百科

贡献者


本词条在以下词条中被提及:

关于本词条的评论共:(0条)
匿名不能发帖!请先 [ 登陆 ]